Credit Shocks and Macroeconomic Fluctuations in Emerging and Low Income Economies

R. Houssa1 \hspace{0.5cm} J. Mohimont2 \hspace{0.5cm} C. Otrok3

1University of Namur, University of Leuven, CESifo

2University of Namur

3University of Missouri and Federal Reserve Bank of St Louis
Introduction

- Consumers are risk averse and thus prefer a smooth consumption path
Introduction

- Consumers are risk averse and thus prefer a smooth consumption path

- Their inability to protect consumption from fluctuations generates welfare loss (Lucas, 1989)
Introduction

- Consumers are risk averse and thus prefer a smooth consumption path.
- Their inability to protect consumption from fluctuations generates welfare loss (Lucas, 1989).
- One goal of macroeconomics is to study the sources of fluctuations and...
Introduction

- Consumers are risk averse and thus prefer a smooth consumption path.

- Their inability to protect consumption from fluctuations generates welfare loss (Lucas, 1989).

- One goal of macroeconomics is to study the sources of fluctuations and

- The design of appropriate stabilization policies.
Consumers are risk averse and thus prefer a smooth consumption path.

Their inability to protect consumption from fluctuations generates welfare loss (Lucas, 1989).

One goal of macroeconomics is to study the sources of fluctuations and

The design of appropriate stabilization policies.

The welfare cost of fluctuation are relatively large in developing countries (Pallage and Robe, 2003 and Houssa, 2013).
Introduction

- Consumers are risk averse and thus prefer a smooth consumption path.

- Their inability to protect consumption from fluctuations generates welfare loss (Lucas, 1989).

- One goal of macroeconomics is to study the sources of fluctuations and

- The design of appropriate stabilization policies.

- The welfare cost of fluctuation are relatively large in developing countries (Pallage and Robe, 2003 and Houssa, 2013).

- Such that successful stabilization policies are more than need in developing countries.
This paper

- Role of *credit shocks* in macroeconomic fluctuations in EMEs & LICs

Supply shocks:
- Specific credit market shocks
- Changes in the risk perception about potential borrowers
- Changes in bank funding: bank runs
- Financial liberalization
- Changes in bank capital available for loans: regulatory

Credit demand:
- Endogenous response of credit to macroeconomic shocks
This paper

- Role of credit shocks in macroeconomic fluctuations in EMEs & LICs
- Study their importance in specific times: e.g. in 2007 – 2009
This paper

- Role of *credit shocks* in macroeconomic fluctuations in EMEs & LICs
- Study their importance in specific times: *e.g.* in 2007 – 2009
- Need to distinguish *credit demand* from *credit supply* shocks (e.g. Bernanke and Lown, 1991 & Trautwein, 2000)
This paper

- Role of credit shocks in macroeconomic fluctuations in EMEs & LICs

- Study their importance in specific times: e.g. in 2007 – 2009

- Need to distinguish credit demand from credit supply shocks (e.g. Bernanke and Lown, 1991 & Trautwein, 2000)

- supply shocks: specific credit market shocks
This paper

- Role of *credit shocks* in macroeconomic fluctuations in EMEs & LICs

- Study their importance in specific times: *e.g.* in 2007 – 2009

- Need to distinguish *credit demand* from *credit supply* shocks (*e.g.* Bernanke and Lown, 1991 & Trautwein, 2000)

 - *supply shocks*: specific credit market shocks
 - changes in the risk perception about potential borrowers
This paper

- Role of credit shocks in macroeconomic fluctuations in EMEs & LICs

- Study their importance in specific times: e.g. in 2007 – 2009

- Need to distinguish credit demand from credit supply shocks (e.g. Bernanke and Lown, 1991 & Trautwein, 2000)

1. supply shocks: specific credit market shocks
 - changes in the risk perception about potential borrowers
 - changes in bank funding: bank runs
This paper

- Role of *credit shocks* in macroeconomic fluctuations in EMEs & LICs
- Study their importance in specific times: *e.g.* in 2007 – 2009
- Need to distinguish *credit demand* from *credit supply* shocks (*e.g.* Bernanke and Lown, 1991 & Trautwein, 2000)

supply shocks: specific credit market shocks

- changes in the risk perception about potential borrowers
- changes in bank funding: bank runs
- financial liberalization
This paper

- Role of credit shocks in macroeconomic fluctuations in EMEs & LICs
- Study their importance in specific times: e.g. in 2007 – 2009
- Need to distinguish credit demand from credit supply shocks (e.g. Bernanke and Lown, 1991 & Trautwein, 2000)

supply shocks: specific credit market shocks

- changes in the risk perception about potential borrowers
- changes in bank funding: bank runs
- financial liberalization
- changes in bank capital available for loans: regulatory
This paper

- Role of *credit shocks* in macroeconomic fluctuations in EMEs & LICs
- Study their importance in specific times: *e.g.* in 2007 – 2009
- Need to distinguish *credit demand* from *credit supply* shocks (*e.g.* Bernanke and Lown, 1991 & Trautwein, 2000)

1. **Supply shocks**: specific credit market shocks
 - changes in the risk perception about potential borrowers
 - changes in bank funding: bank runs
 - financial liberalization
 - changes in bank capital available for loans: regulatory

2. **Credit demand**: endogenous respond of credit to macroeconomic shocks
This paper

- We study South Africa (SA) and Ghana
This paper

- We study South Africa (SA) and Ghana
This paper

- We study South Africa (SA) and Ghana

- Presentation focuses on South Africa
This paper

- We study South Africa (SA) and Ghana
- Presentation focuses on South Africa
This paper

- We study South Africa (SA) and Ghana
 - Presentation focuses on South Africa
This paper

- Examine a wide range of domestic and external shocks
This paper

- Examine a wide range of domestic and external shocks
 - G7-Credit
This paper

- Examine a wide range of domestic and external shocks

 1. G7-Credit

 2. G7-Productivity
This paper

- Examine a wide range of domestic and external shocks
 - G7-Credit
 - G7-Productivity
 - G7-Demand
This paper

- Examine a wide range of domestic and external shocks
 1. G7-Credit
 2. G7-Productivity
 3. G7-Demand
 4. SA-Credit
This paper

- Examine a wide range of domestic and external shocks
 1. G7-Credit
 2. G7-Productivity
 3. G7-Demand
 4. SA-Credit
 5. SA-Productivity
This paper

- Examine a wide range of domestic and external shocks

1. G7-Credit
2. G7-Productivity
3. G7-Demand
4. SA-Credit
5. SA-Productivity
6. SA-Demand
This paper

- Examine a wide range of domestic and external shocks
 1. G7-Credit
 2. G7-Productivity
 3. G7-Demand
 4. SA-Credit
 5. SA-Productivity
 6. SA-Demand

- Examine three transmission channels of external shocks to South Africa (SA):
This paper

- Examine a wide range of domestic and external shocks
 1. G7-Credit
 2. G7-Productivity
 3. G7-Demand
 4. SA-Credit
 5. SA-Productivity
 6. SA-Demand

- Examine three transmission channels of external shocks to South Africa (SA):
 4. Credit
This paper

- Examine a wide range of domestic and external shocks
 1. G7-Credit
 2. G7-Productivity
 3. G7-Demand
 4. SA-Credit
 5. SA-Productivity
 6. SA-Demand

- Examine three transmission channels of external shocks to South Africa (SA):
 1. Credit
 2. Trade volume
This paper

- Examine a wide range of domestic and external shocks
 1. G7-Credit
 2. G7-Productivity
 3. G7-Demand
 4. SA-Credit
 5. SA-Productivity
 6. SA-Demand

- Examine three transmission channels of external shocks to South Africa (SA):
 1. Credit
 2. Trade volume
 3. Commodity prices
Literature: Advanced countries

- Different identification schemes to identify credit supply shocks
Literature: Advanced countries

- Different identification schemes to identify credit supply shocks
 - *Causal ordering*, Gilchrist et al. (2009): credit (financial) shocks are important
Literature: Advanced countries

- Different identification schemes to identify credit supply shocks
 1. *Causal ordering*, Gilchrist et al. (2009): credit (financial) shocks are important
 2. *Credit spreads*, Meeks (2012), Helbling et al. (2011), less important
Literature: Advanced countries

- Different identification schemes to identify credit supply shocks

 1. *Causal ordering*, Gilchrist et al. (2009): credit (financial) shocks are important

 2. *Credit spreads*, Meeks (2012), Helbling et al. (2011), less important

 - fundamentals affect default risks: *credit demand shocks*
Literature: Advanced countries

- Different identification schemes to identify credit supply shocks
 1. *Causal ordering*, Gilchrist et al. (2009): credit (financial) shocks are important
 2. *Credit spreads*, Meeks (2012), Helbling et al. (2011), less important
 - fundamentals affect default risks: *credit demand shocks*
 - non-fundamental: *credit supply shocks*
Literature: Advanced countries

- Different identification schemes to identify credit supply shocks

 1. *Causal ordering*, Gilchrist et al. (2009): credit (financial) shocks are important

 2. *Credit spreads*, Meeks (2012), Helbling et al. (2011), less important

 - fundamentals affect default risks: *credit demand shocks*

 - non-fundamental: *credit supply shocks*

 3. *Lending rates*: e.g. Gambetti and Musso (2012): in between
Literature: Advanced countries

- Different identification schemes to identify credit supply shocks

 1. *Causal ordering*, Gilchrist et al. (2009): credit (financial) shocks are important

 2. *Credit spreads*, Meeks (2012), Helbling et al. (2011), less important
 - fundamentals affect default risks: *credit demand shocks*
 - non-fundamental: *credit supply shocks*

 3. *Lending rates*: e.g. Gambetti and Musso (2012): in between
 - credit demand, + comovement: lending and credit
Introduction

Literature: Advanced countries

- Different identification schemes to identify credit supply shocks

 1. *Causal ordering*, Gilchrist et al. (2009): credit (financial) shocks are important

 2. *Credit spreads*, Meeks (2012), Helbling et al. (2011), less important
 - fundamentals affect default risks: *credit demand shocks*
 - non-fundamental: *credit supply shocks*

 3. *Lending rates*: e.g. Gambetti and Musso (2012): in between
 - credit demand, + comovement: lending and credit
 - credit supply, − comovement: lending and credit
Introduction

Literature: EMEs & LICs

Cetorelli and Goldberg (2010)
Introduction

Literature: EMEs & LICs

 - emerging markets across Europe, Asia, and Latin America

2. Tamási and Világi (2011) sign restrictions on Hungary: large importance of credit supply shocks

3. IMF (2009) causal ordering: "bank default probability reduces real activity in South Africa"
Literature: EMEs & LICs

 - emerging markets across Europe, Asia, and Latin America
 - regression techniques: causality? expected shocks versus non-expected shocks?
Introduction

Literature: EMEs & LICs

 - emerging markets across Europe, Asia, and Latin America
 - \textit{regression techniques}: causality? expected shocks versus non-expected shocks?

2. Tamási and Világi (2011) sign restrictions on Hungary: large importance of credit supply shocks
Literature: EMEs & LICs

 - emerging markets across Europe, Asia, and Latin America
 - regression techniques: causality? expected shocks versus non-expected shocks?

2. Tamási and Világi (2011) sign restrictions on Hungary: large importance of credit supply shocks

Outline

1. Methodology
1. Methodology

2. Empirical Results
Outline

1. Methodology
2. Empirical Results
3. Conclusion
We estimate a series of \textit{VAR models} (Sims, 1980)

\begin{equation}
Y_t = B_0 + B_1 Y_{t-1} + \cdots + B_p Y_{t-p} + \epsilon_t;
\end{equation}

where Y_t is a $n \times 1$ vector of economic and financial indicators, B_i are $n \times n$ autoregressive coefficients, B_0 contains the constant terms, and ϵ_t is a $n \times 1$ vector of the one-step ahead prediction error with $\epsilon_t = E(\epsilon_t | t)$. While Eq. 1 is a purely statistical model, it is the reduced of a typical Dynamic Stochastic General Equilibrium (DSGE) model when the endogenous state variables of the DSGE model are observed (Ravenna, 2007).
Model

- We estimate a series of \textit{VAR models} (Sims, 1980)
We estimate a series of VAR models (Sims, 1980)

\[Y_t = B_0 + B_1 Y_{t-1} + \ldots + B_p Y_{t-p} + \mu_t, \]

where \(Y_t \) is a \(n \times 1 \) vector of economic and financial indicators,
Model

- We estimate a series of VAR models (Sims, 1980)
 \[Y_t = B_0 + B_1 Y_{t-1} + \ldots + B_p Y_{t-p} + \mu_t, \]
 (1)

- where \(Y_t \) is a \(n \times 1 \) vector of economic and financial indicators,

- \(B_i \) are \(n \times n \) autoregressive coefficients
Model

- We estimate a series of \textit{VAR models} (Sims, 1980)

\[Y_t = B_0 + B_1 Y_{t-1} + \ldots + B_p Y_{t-p} + \mu_t, \]

(1)

- where \(Y_t \) is a \(n \times 1 \) vector of economic and financial indicators,

- \(B_i \) are \(n \times n \) autoregressive coefficients

- \(B_0 \) contains the constant terms, and
Model

- We estimate a series of *VAR models* (Sims, 1980)
 \[
 Y_t = B_0 + B_1 Y_{t-1} + \ldots + B_p Y_{t-p} + \mu_t, \tag{1}
 \]
 where \(Y_t\) is a \(n \times 1\) vector of economic and financial indicators,

- \(B_i\) are \(n \times n\) autoregressive coefficients

- \(B_0\) contains the constant terms, and

- \(\mu_t\) is a \(n \times 1\) vector of is the one-step ahead prediction error with \(\Sigma = E(\mu_t \mu_t')\).
Model

- We estimate a series of \textit{VAR models} (Sims, 1980)

\[Y_t = B_0 + B_1 Y_{t-1} + \ldots + B_p Y_{t-p} + \mu_t , \]

where \(Y_t \) is a \(n \times 1 \) vector of economic and financial indicators,

- \(B_i \) are \(n \times n \) autoregressive coefficients

- \(B_0 \) contains the constant terms, and

- \(\mu_t \) is a \(n \times 1 \) vector of is the one-step ahead prediction error with \(\Sigma = E(\mu_t \mu'_t) \).

- While Eq1 is a purely statistical model
Model

- We estimate a series of VAR models (Sims, 1980)

\[Y_t = B_0 + B_1 Y_{t-1} + \ldots + B_p Y_{t-p} + \mu_t, \]

(1)

- where \(Y_t \) is a \(n \times 1 \) vector of economic and financial indicators,

- \(B_i \) are \(n \times n \) autoregressive coefficients

- \(B_0 \) contains the constant terms, and

- \(\mu_t \) is a \(n \times 1 \) vector of is the one-step ahead prediction error with \(\Sigma = E(\mu_t\mu'_t) \).

- While Eq1 is a purely statistical model

- It is the reduced of a typical Dynamic Stochastic General Equilibrium (DSGE) model
We estimate a series of VAR models (Sims, 1980)

\[Y_t = B_0 + B_1 Y_{t-1} + ... + B_p Y_{t-p} + \mu_t, \]

(1)

where \(Y_t \) is a \(n \times 1 \) vector of economic and financial indicators,

\(B_i \) are \(n \times n \) autoregressive coefficients

\(B_0 \) contains the constant terms, and

\(\mu_t \) is a \(n \times 1 \) vector of is the one-step ahead prediction error with \(\Sigma = E(\mu_t\mu_t') \).

While Eq1 is a purely statistical model

It is the reduced of a typical Dynamic Stochastic General Equilibrium (DSGE) model

When the endogenous state variables of the DSGE model are observed (Ravenna, 2007)
Bayesian Estimation

• **VAR models**

\[Y_t = B_0 + B_1 Y_{t-1} + \ldots + B_p Y_{t-p} + \mu_t, \] \hspace{1cm} (2)
Bayesian Estimation

- **VAR models**
 \[Y_t = B_0 + B_1 Y_{t-1} + \ldots + B_p Y_{t-p} + \mu_t, \]
 \[\Sigma = E(\mu_t \mu_t') \]

South Africa and the G7 countries: 1988:1-2010:3

Lag length fixed to 3 in all cases

We use Minnesota priors to handle the size of the VAR (Bandura et al., 2010)

G7 block and commodity prices are exogenous to South Africa: SOE
Bayesian Estimation

- **VAR models**
 \[Y_t = B_0 + B_1 Y_{t-1} + ... + B_p Y_{t-p} + \mu_t, \]
 \[\text{with } \Sigma = E(\mu_t\mu_t') \]

- South Africa and the G7 countries: 1988:1-2010:3
Bayesian Estimation

- **VAR models**
 \[Y_t = B_0 + B_1 Y_{t-1} + \ldots + B_p Y_{t-p} + \mu_t, \]
 \[\Sigma = E(\mu_t \mu_t') \]
- South Africa and the G7 countries: 1988:1-2010:3
- Lag length fixed to 3 in all cases
Bayesian Estimation

- **VAR models**
 \[Y_t = B_0 + B_1 Y_{t-1} + \ldots + B_p Y_{t-p} + \mu_t, \]
 \[\Sigma = E(\mu_t \mu'_t) \]

- South Africa and the G7 countries: 1988:1-2010:3

- Lag length fixed to 3 in all cases

- We use Minnesota priors to handle the size of the VAR (Bandura et al., 2010)
Bayesian Estimation

- **VAR models**
 \[Y_t = B_0 + B_1 Y_{t-1} + \ldots + B_p Y_{t-p} + \mu_t, \]
 \[\Sigma = E(\mu_t \mu_t') \]

- South Africa and the G7 countries: 1988:1-2010:3

- Lag length fixed to 3 in all cases

- We use Minnesota priors to handle the size of the VAR (Bandura et al., 2010)

- G7 block and commodity prices are exogenous to South Africa: SOE
From Reduced Form VAR to Structural VAR (SVAR)

- Reduced form VAR model

\[
Y_t = B_0 + B_1 Y_{t-1} + \ldots + B_p Y_{t-p} + \mu_t, \quad (3)
\]

\[
Y_t = B_0 + B_1 Y_{t-1} + \ldots + B_p Y_{t-p} + A \varepsilon_t, \quad (4)
\]
From Reduced Form VAR to Structural VAR (SVAR)

- Reduced form VAR model

\[Y_t = B_0 + B_1 Y_{t-1} + \ldots + B_p Y_{t-p} + \mu_t, \]
\[Y_t = B_0 + B_1 Y_{t-1} + \ldots + B_p Y_{t-p} + A\varepsilon_t \]

- where is the vector structural shocks \(\varepsilon_t \) with \(\Sigma = E(\mu_t\mu'_t) \) and \(I = E(\varepsilon_t\varepsilon'_t) \)
From Reduced Form VAR to Structural VAR (SVAR)

- Reduced form VAR model

\[Y_t = B_0 + B_1 Y_{t-1} + \ldots + B_p Y_{t-p} + \mu_t, \]
\[Y_t = B_0 + B_1 Y_{t-1} + \ldots + B_p Y_{t-p} + A\varepsilon_t \]

where \(\varepsilon_t \) is the vector structural shocks with \(\Sigma = E(\mu_t\mu_t') \) and \(I = E(\varepsilon_t\varepsilon_t') \)

- So identification amount to find the matrix \(A \)
From Reduced Form VAR to Structural VAR (SVAR)

- Reduced form VAR model
 \[Y_t = B_0 + B_1 Y_{t-1} + \ldots + B_p Y_{t-p} + \mu_t, \]
 \[Y_t = B_0 + B_1 Y_{t-1} + \ldots + B_p Y_{t-p} + A\epsilon_t \]
 where \(\epsilon_t \) is the vector structural shocks with \(\Sigma = E(\mu_t\mu_t') \) and \(I = E(\epsilon_t\epsilon_t') \).
- So identification amount to find the matrix \(A \).
- In the case of causal ordering \(A = \text{chol}(\Sigma, \text{lower}) \).
From Reduced Form VAR to Structural VAR (SVAR)

- Reduced form VAR model
 \[Y_t = B_0 + B_1 Y_{t-1} + \ldots + B_p Y_{t-p} + \mu_t, \]
 \[Y_t = B_0 + B_1 Y_{t-1} + \ldots + B_p Y_{t-p} + A\epsilon_t \]

where \(\epsilon_t \) is the vector structural shocks \(\Sigma = E(\mu_t\mu_t') \) and \(I = E(\epsilon_t\epsilon_t') \)

- So identification amount to find the matrix \(A \)
- In the case of causal ordering \(A = \text{chol}(\Sigma, \text{lower}) \)
- Sign restrictions using penalty function: Uhlig (2005) and Mountford and Uhlig (2009)
From Reduced Form VAR to Structural VAR (SVAR)

- Reduced form VAR model

\[Y_t = B_0 + B_1 Y_{t-1} + \ldots + B_p Y_{t-p} + \mu_t, \]
\[Y_t = B_0 + B_1 Y_{t-1} + \ldots + B_p Y_{t-p} + A \varepsilon_t \]

where \(\varepsilon_t \) is the vector structural shocks \(\varepsilon_t \) with \(\Sigma = E(\mu_t \mu_t') \) and \(I = E(\varepsilon_t \varepsilon_t') \)

- So identification amount to find the matrix \(A \)

- In the case of causal ordering \(A = \text{chol}(\Sigma, \text{lower}) \)

- Sign restrictions using penalty function: Uhlig (2005) and Mountford and Uhlig (2009)

- Before introducing the penalty function approach note that
From Reduced Form VAR to Structural VAR (SVAR)

- Reduced form VAR model
 \[Y_t = B_0 + B_1 Y_{t-1} + \ldots + B_p Y_{t-p} + \mu_t, \]
 \[Y_t = B_0 + B_1 Y_{t-1} + \ldots + B_p Y_{t-p} + A\varepsilon_t \]

where is the vector structural shocks \(\varepsilon_t \) with \(\Sigma = E(\mu_t\mu'_t) \) and \(I = E(\varepsilon_t\varepsilon'_t) \)

- So identification amount to find the matrix \(A \)
- In the case of causal ordering \(A = \text{chol}(\Sigma, \text{lower}) \)
- Sign restrictions using penalty function: Uhlig (2005) and Mountford and Uhlig (2009)

- Before introducing the penalty function approach note that
- Impulse response function (IRF) is defined as:

\[\text{IRF} = (IBLP)^{-1}AP\varepsilon_t; \]
From Reduced Form VAR to Structural VAR (SVAR)

- Reduced form VAR model

\[
Y_t = B_0 + B_1 Y_{t-1} + \ldots + B_p Y_{t-p} + \mu_t, \quad (3)
\]

\[
Y_t = B_0 + B_1 Y_{t-1} + \ldots + B_p Y_{t-p} + A\epsilon_t \quad (4)
\]

- where is the vector structural shocks \(\epsilon_t \) with \(\Sigma = E(\mu_t \mu_t') \) and \(I = E(\epsilon_t \epsilon_t') \)
- So identification amount to find the matrix \(A \)
- In the case of causal ordering \(A=\text{chol}(\Sigma, \text{lower}) \)
- Sign restrictions using penalty function: Uhlig (2005) and Mountford and Uhlig (2009)

- Before introducing the penalty function approach note that
- Impulse response function (IRF) is defined as:
From Reduced Form VAR to Structural VAR (SVAR)

- Reduced form VAR model

\[
Y_t = B_0 + B_1 Y_{t-1} + \ldots + B_p Y_{t-p} + \mu_t,
\]

\[
Y_t = B_0 + B_1 Y_{t-1} + \ldots + B_p Y_{t-p} + A\varepsilon_t
\]

(3) \hspace{1cm} (4)

where \(\varepsilon_t \) is the vector structural shocks with \(\Sigma = E(\mu_t\mu'_t) \) and \(I = E(\varepsilon_t\varepsilon'_t) \)

- So identification amount to find the matrix \(A \)

- In the case of causal ordering \(A = \text{chol}(\Sigma, \text{lower}) \)

- Sign restrictions using penalty function: Uhlig (2005) and Mountford and Uhlig (2009)

- Before introducing the penalty function approach note that

- Impulse response function (IRF) is defined as:

\[
IRF = (I - BL)^{-1} AP\varepsilon_t,
\]

(5)

- Sign restriction amounts to choose elements of \(P \) such that
From Reduced Form VAR to Structural VAR (SVAR)

- **Reduced form VAR model**

\[
Y_t = B_0 + B_1 Y_{t-1} + \ldots + B_p Y_{t-p} + \mu_t, \tag{3}
\]

\[
Y_t = B_0 + B_1 Y_{t-1} + \ldots + B_p Y_{t-p} + A\varepsilon_t \tag{4}
\]

- where is the vector structural shocks \(\varepsilon_t\) with \(\Sigma = E(\mu_t\mu_t')\) and \(I = E(\varepsilon_t\varepsilon_t')\)
- So identification amount to find the matrix \(A\)
- In the case of causal ordering \(A=\text{chol}(\Sigma, \text{lower})\)
- Sign restrictions using penalty function: Uhlig (2005) and Mountford and Uhlig (2009)

Before introducing the penalty function approach note that
- Impulse response function (IRF) is defined as:

\[
IRF = (I - BL)^{-1} AP\varepsilon_t, \tag{5}
\]

- Sign restriction amounts to choose elements of \(P\) such that
- The sign of a variable to a certain shock has a theoretical justifiable sign
From Reduced Form VAR to Structural VAR (SVAR)

- Pure sign restriction (Uhlig (2005, and Canova and De Nicolo, 2002)
From Reduced Form VAR to Structural VAR (SVAR)

- Pure sign restriction (Uhlig (2005, and Canova and De Nicolo, 2002)
- Draw P from a normal distribution

Penalty function define the following non-linear function

$$f(x) = \begin{cases}
 x & \text{if } x \leq 0 \\
 100x & \text{if } x > 0
\end{cases}$$

for finding a negative response

$$f(x) = \begin{cases}
 100x & \text{if } x \leq 0 \\
 x & \text{if } x > 0
\end{cases}$$

for finding a positive response

where x are elements of the IRF, which depend on P
From Reduced Form VAR to Structural VAR (SVAR)

- Pure sign restriction (Uhlig (2005, and Canova and De Nicolo, 2002)
- Draw P from a normal distribution
- If IRFs satisfy the sign imposed keep the draw otherwise draw another until the researcher finds

<table>
<thead>
<tr>
<th>x</th>
<th>$f(x)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$x > 0$</td>
<td>$100x$</td>
</tr>
<tr>
<td>$x < 0$</td>
<td>x</td>
</tr>
</tbody>
</table>
From Reduced Form VAR to Structural VAR (SVAR)

- Pure sign restriction (Uhlig (2005, and Canova and De Nicolo, 2002)
- Draw P from a normal distribution
- If IRFs satisfy the sign imposed keep the draw otherwise draw another until the researcher finds
- A number of preferred signs for IRF of variables of interest
From Reduced Form VAR to Structural VAR (SVAR)

- Pure sign restriction (Uhlig (2005, and Canova and De Nicolo, 2002)
- Draw P from a normal distribution
- If IRFs satisfy the sign imposed keep the draw otherwise draw another until the researcher finds
- A number of preferred signs for IRF of variables of interest
- Penalty function define the following non-linear function

\[
\begin{align*}
 f(x) &= x & \text{if } x \leq 0 \\
 f(x) &= -100x & \text{if } x > 0
\end{align*}
\]

where x are elements of the IRF, which depend on P.

Minimize $f(x)$ to obtain elements of P.
From Reduced Form VAR to Structural VAR (SVAR)

- Pure sign restriction (Uhlig (2005, and Canova and De Nicolo, 2002)
- Draw \(P \) from a normal distribution
- If IRFs satisfy the sign imposed keep the draw otherwise draw another until the researcher finds
- A number of preferred signs for IRF of variables of interest
- Penalty function define the following non-linear function

\[
f(x) = \begin{cases}
 x & \text{if } x < 0 \\
 -100x & \text{if } x > 0
\end{cases}
\]

where \(x \) are elements of the IRF, which depend on \(P \).
From Reduced Form VAR to Structural VAR (SVAR)

- Pure sign restriction (Uhlig (2005, and Canova and De Nicolo, 2002)
- Draw P from a normal distribution
- If IRFs satisfy the sign imposed keep the draw otherwise draw another until the researcher finds
- A number of preferred signs for IRF of variables of interest
- Penalty function define the following non-linear function

$$f(x) = \begin{cases}
 x & \text{if } x \leq 0 \\
 100x & \text{if } x > 0
\end{cases} \quad \text{for finding a negative response}$$

$$f(x) = \begin{cases}
 -100x & \text{if } x \leq 0 \\
 -x & \text{if } x > 0
\end{cases} \quad \text{for finding a positive response}$$

- where x are elements of the IRF, which depend on P
Methodology

From Reduced Form VAR to Structural VAR (SVAR)

- Pure sign restriction (Uhlig (2005, and Canova and De Nicolo, 2002)
- Draw P from a normal distribution
- If IRFs satisfy the sign imposed keep the draw otherwise draw another until the researcher finds
- A number of preferred signs for IRF of variables of interest
- Penalty function define the following non-linear function

$$f(x) = \begin{cases}
 x & \text{if } x \leq 0 \\
 100x & \text{if } x > 0
\end{cases} \quad \text{for finding a negative response}$$

$$f(x) = \begin{cases}
 -100x & \text{if } x \leq 0 \\
 -x & \text{if } x > 0
\end{cases} \quad \text{for finding a positive response}$$

- where x are elements of the IRF, which depend on P
- Minimize $f(x)$ to obtain elements of P
Identifying restrictions imposed on the first 4 quarters

<table>
<thead>
<tr>
<th></th>
<th>G7 Credit</th>
<th>G7 Prod.</th>
<th>G7 Dem.</th>
<th>SA Credit</th>
<th>SA Prod.</th>
<th>SA Dem.</th>
</tr>
</thead>
<tbody>
<tr>
<td>G7-Real GDP</td>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>G7-Inflation</td>
<td></td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G7-Real Credit</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G7-Tbil</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>US-Credit Spread</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>US-Default</td>
<td></td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SA-Real GDP</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SA-Inflation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SA-Real Credit</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SA-Repo Rate</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SA-Credit Spread</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SA-Default</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SA-Commodity Price</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>REER of the rand</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SA-Export</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SA-Import</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Tools

- After identification of the shocks
Tools

- After identification of the shocks
- We employ three tools
Methods

- After identification of the shocks
- We employ three tools
 - Impulse response functions
Tools

- After identification of the shocks

- We employ three tools

 1. Impulse response functions

 2. Variance Decomposition
Tools

- After identification of the shocks
- We employ three tools
 1. Impulse response functions
 2. Variance Decomposition
 3. Counterfactual Analysis
Data and transformations

- Derive data from 4 sources: Haver Analyst, Macrobond, Datastream, SARB

- Real GDP
- CPI
- Real Credit
- Exchange Rate
- Export
- Import
- Number of insolvent firms (SA)
- Commodity Price: Coal, gold & Platinum

- Other series are in level
- G7 series are estimated as the first PC (Stock & Watson, 2002)
- SA-Credit spread: yield on Eskom bond and baa US private corporate bond
- G7 spread: US baa-aaa corporate spread
- SA-Default: Insolvency
- G7-default: Moody’s default probability on US corporate bonds
Methodology

Data and transformations

- Derive data from 4 sources: Haver Analyst, Macrobond, Datastream, SARB
- YoY transformations to get growth rate
Data and transformations

- Derive data from 4 sources: Haver Analyst, Macrobond, Datastream, SARB
- YoY transformations to get growth rate
 - Real GDP
Data and transformations

- Derive data from 4 sources: Haver Analyst, Macrobond, Datastream, SARB
- YoY transformations to get growth rate
 - Real GDP
 - CPI

Other series are in level

G7 series are estimated as the first PC (Stock & Watson, 2002)

SA-Credit spread: yield on Eskom bond and baa US private corporate bond

G7 spread: US baa-aaa corporate spread

SA-Default: Insolvency

G7-default: Moody’s default probability on US corporate bonds
Data and transformations

- Derive data from 4 sources: Haver Analyst, Macrobond, Datastream, SARB
- YoY transformations to get growth rate
 - Real GDP
 - CPI
 - Real Credit
Data and transformations

- Derive data from 4 sources: Haver Analyst, Macrobond, Datastream, SARB
- YoY transformations to get growth rate
 - Real GDP
 - CPI
 - Real Credit
 - Exchange Rate
Data and transformations

- Derive data from 4 sources: Haver Analyst, Macrobond, Datastream, SARB
- YoY transformations to get growth rate
 - Real GDP
 - CPI
 - Real Credit
 - Exchange Rate
 - Export

Other series are in level

G7 series are estimated as the first PC (Stock & Watson, 2002)

SA-Credit spread: yield on Eskom bond and baa US private corporate bond

G7 spread: US baa-aaa corporate spread

SA-Default: Insolvency

G7-default: Moody’s default probability on US corporate bonds
Data and transformations

- Derive data from 4 sources: Haver Analyst, Macrobond, Datastream, SARB
- YoY transformations to get growth rate
 - Real GDP
 - CPI
 - Real Credit
 - Exchange Rate
 - Export
 - Import
Data and transformations

- Derive data from 4 sources: Haver Analyst, Macrobond, Datastream, SARB
- YoY transformations to get growth rate
 - Real GDP
 - CPI
 - Real Credit
 - Exchange Rate
 - Export
 - Import
 - Number of insolvent firms (SA)
Data and transformations

- Derive data from 4 sources: Haver Analyst, Macrobond, Datastream, SARB
- YoY transformations to get growth rate
 - Real GDP
 - CPI
 - Real Credit
 - Exchange Rate
 - Export
 - Import
 - Number of insolvent firms (SA)
- Commodity Price: Coal, gold & Platinum
Data and transformations

- Derive data from 4 sources: Haver Analyst, Macrobond, Datastream, SARB
- YoY transformations to get growth rate
 - Real GDP
 - CPI
 - Real Credit
 - Exchange Rate
 - Export
 - Import
 - Number of insolvent firms (SA)
 - Commodity Price: Coal, gold & Platinum
- Other series are in level
Data and transformations

- Derive data from 4 sources: Haver Analyst, Macrobond, Datastream, SARB
- YoY transformations to get growth rate
 - Real GDP
 - CPI
 - Real Credit
 - Exchange Rate
 - Export
 - Import
 - Number of insolvent firms (SA)
 - Commodity Price: Coal, gold & Platinum
- Other series are in level
- G7 series are estimated as the first PC (Stock & Watson, 2002)
Data and transformations

- Derive data from 4 sources: Haver Analyst, Macrobond, Datastream, SARB
- YoY transformations to get growth rate
 - Real GDP
 - CPI
 - Real Credit
 - Exchange Rate
 - Export
 - Import
 - Number of insolvent firms (SA)
 - Commodity Price: Coal, gold & Platinum
- Other series are in level
- G7 series are estimated as the first PC (Stock & Watson, 2002)
- SA-Credit spread: yield on Eskom bond and baa US private corporate bond
Data and transformations

- Derive data from 4 sources: Haver Analyst, Macrobond, Datastream, SARB
- YoY transformations to get growth rate
 - Real GDP
 - CPI
 - Real Credit
 - Exchange Rate
 - Export
 - Import
 - Number of insolvent firms (SA)
 - Commodity Price: Coal, gold & Platinum
- Other series are in level
- G7 series are estimated as the first PC (Stock & Watson, 2002)
- SA-Credit spread: yield on Eskom bond and baa US private corporate bond
- G7 spread: US baa-aaa corporate spread
Data and transformations

- Derive data from 4 sources: Haver Analyst, Macrobond, Datastream, SARB
- YoY transformations to get growth rate
 - Real GDP
 - CPI
 - Real Credit
 - Exchange Rate
 - Export
 - Import
 - Number of insolvent firms (SA)
 - Commodity Price: Coal, gold & Platinum
- Other series are in level
- G7 series are estimated as the first PC (Stock & Watson, 2002)
- SA-Credit spread: yield on Eskom bond and baa US private corporate bond
- G7 spread: US baa-aaa corporate spread
- SA-Default: Insolvency
Data and transformations

- Derive data from 4 sources: Haver Analyst, Macrobond, Datastream, SARB
- YoY transformations to get growth rate
 - Real GDP
 - CPI
 - Real Credit
 - Exchange Rate
 - Export
 - Import
 - Number of insolvent firms (SA)
 - Commodity Price: Coal, gold & Platinum
- Other series are in level
- G7 series are estimated as the first PC (Stock & Watson, 2002)
- SA-Credit spread: yield on Eskom bond and baa US private corporate bond
- G7 spread: US baa-aaa corporate spread
- SA-Default: Insolvency
- G7-default: Moody’s default probability on US corporate bonds
Credit Shocks

G7-credit

SA-Credit
Productivity Shocks

G7-productivity

SA-Productivity
Demand Shocks

G7-Demand

SA-Demand
Responses to G7 Shocks

G7-Demand

G7-GDP

G7-Inflation

G7-Credit

G7-Tbil

US-Spread

US-Default

SA-Inflation

SA-Credit

SA-commodity Price

SA-Repo Rate

SA-Spread

SA-Import

SA-Export

SA-Real Eff. Ex. Rate

SA-Default

SA-GDP

SA-Inflation

SA-Credit

SA-Tbil

SA-Spread

SA-Import
Responses to G7 Shocks

G7-productivity

G7-GDP
G7-Inflation
G7-Credit
G7-Tbli
US-Spread
US-Default
SA-commodity Price
SA-GDP
SA-inflation
SA-Credit
SA-Repo Rate
SA-Spread
SA-Default
SA-Real Eff. Ex. Rate
SA-Export
SA-Import
Empirical Results

Impulse Response Function (IRF)

Responses to G7 Shocks

G7-credit

G7-GDP

US-Spread

SA-Inflation

SA-Default

G7-Inflation

US-Default

SA-Credit

SA-Real Eff. Ex. Rate

G7-Credit

SA-commodity Price

SA-Repo Rate

SA-Export

G7-Tbil

SA-GDP

SA-Spread

SA-Import

Houssa/Mohimont/Otrok (CSAE)
Empirical Results

Impulse Response Function (IRF)

Responses to SA Shocks

SA-Demand

G7-GDP

US-Spread

SA-Inflation

SA-Default

G7-Inflation

US-Default

SA-Credit

SA-Real Eff. Ex. Rate

G7-Credit

SA-commodity Price

SA-Repo Rate

SA-Export

G7-Tbil

SA-GDP

SA-Spread

SA-Import
Empirical Results

Responses to SA Shocks

SA-Productivity

G7-GDP

US-Spread

SA-Inflation

SA-Default

G7-Inflation

US-Default

SA-Credit

SA-Real Eff. Ex. Rate

G7-Credit

SA-commodity Price

SA-Repo Rate

SA-Export

G7-Tbil

SA-GDP

SA-Spread

SA-Import
Empirical Results

Impulse Response Function (IRF)

Responses to SA Shocks

SA-Credit

Houssa/Mohimont/Otrok (CSAE)
G7-shocks contribution to

G7-Productivity

G7-GDP

G7-Inflation

G7-Credit

G7-Tbil

US-Spread

SA-Inflation

SA-Default

SA-Real Eff. Ex. Rate

SA-Commodity Price

SA-Repo Rate

SA-Export

SA-GDP

SA-Spread

SA-Import
G7-shocks contribution to

G7-Demand
Empirical Results
Variance Decomposition

G7-shocks contribution to G7-credit

G7-GDP
US-Spread
G7-Inflation
SA-Inflation
SA-Default
G7-Credit
US-Default
SA-Credit
SA-Real Eff. Ex. Rate
G7-Tbil
SA-commodity Price
SA-Repo Rate
SA-Export
SA-GDP
SA-Spread
SA-Import

Houssa/Mohimont/Otrok (CSAE)
SA-shocks contribution to

SA-Productivity

- G7-GDP
- US-Spread
- G7-Inflation
- US-Default
- G7-Credit
- SA-commodity Price
- G7-Tbil
- SA-GDP
- G7-Tbil
- SA-Spread
- G7-Tbil
- SA-Import
- G7-Tbil
- SA-Export

Houssam Mohimont Otok (CSAE) Credit Shocks 28 / 38
SA-shocks contribution to SA-Demand

Empirical Results

Variance Decomposition

Houssa/Mohimont/Otrok (CSAE)
SA-shocks contribution to

SA-Credit

- **G7-GDP**
- **US-Spread**
- **SA-Inflation**
- **SA-Default**
- **G7-Inflation**
- **US-Default**
- **SA-Credit**
- **SA-Real Eff. Ex. Rate**
- **G7-Credit**
- **SA-commodity Price**
- **SA-Repo Rate**
- **SA-Export**
- **G7-Tbil**
- **SA-GDP**
- **SA-Spread**
- **SA-Import**
Contributions of Shocks to G7 GDP in 2007-2010

- **SA-Demand to G7-GDP**
 - 2008: -20.00
 - 2009: -15.00
 - 2010: 0.00

- **G7-Demand to G7-GDP**
 - 2008: -20.00
 - 2009: -10.00
 - 2010: 5.00

- **SA-Productivity to G7-GDP**
 - 2008: -15.00
 - 2009: 0.00
 - 2010: 5.00

- **G7-Productivity to G7-GDP**
 - 2008: 0.00
 - 2009: 5.00
 - 2010: 10.00

- **SA-Credit to G7-GDP**
 - 2008: -15.00
 - 2009: 0.00
 - 2010: 5.00

- **G7-Credit to G7-GDP**
 - 2008: 0.00
 - 2009: 5.00
 - 2010: 10.00
Contributions of Shocks to SA GDP in 2007-2010

- **SA-Demand Shocks to SA-GDP**
- **G7-Demand to SA-GDP**
- **SA-Productivity Shocks to SA-GDP**
- **G7-Productivity to SA-GDP**
- **SA-Credit Shocks to SA-GDP**
- **G7-Credit to SA-GDP**
G7 Impacts on AS in 2007-2010: Trade Volume Channel

G7-Demand to SA-Export

G7-Productivity to SA-Export

G7-credit to SA-Export
Empirical Results
Counterfactual Analysis

G7 Impacts on SA in 2007-2010: Trade Volume Channel

G7-Demand to SA-Import

G7-Productivity to SA-Import

G7-credit to SA-Import
G7 Impacts on SA in 2007-2010: Commodity Prices channel

G7-Demand to SA-commodity Price

G7-Productivity to SA-commodity Price

G7-credit to SA-commodity Price

Houssa/Mohimont/Otrok (CSAE)
Empirical Results

G7 Impact on AS in 2007-2010: Credit Channel

Houssa/Mohimont/Otrok (CSAE)

Credit Shocks
Conclusion

- We study the role of domestic and G7 credit supply shocks on macroeconomic fluctuations in EMEs.
Conclusion

- We study the role of domestic and G7 credit supply shocks on macroeconomic fluctuations in EMEs

- Conditioning on traditional macroeconomic shocks and
Conclusion

- We study the role of domestic and G7 credit supply shocks on macroeconomic fluctuations in EMEs

- Conditioning on traditional macroeconomic shocks and

- Examining the transmission channels of the shocks
Conclusion

- We study the role of domestic and G7 credit supply shocks on macroeconomic fluctuations in EMEs

- Conditioning on traditional macroeconomic shocks and

- Examining the transmission channels of the shocks

- Quarterly data on South Africa and G7 countries in 1988:1-2010
Conclusion

- We study the role of domestic and G7 credit supply shocks on macroeconomic fluctuations in EMEs
- Conditioning on traditional macroeconomic shocks and
- Examining the transmission channels of the shocks
- Quarterly data on South Africa and G7 countries in 1988:1-2010
- Indicate that external shocks are the main drivers of real activity in South Africa
Conclusion

- We study the role of domestic and G7 credit supply shocks on macroeconomic fluctuations in EMEs.

- Conditioning on traditional macroeconomic shocks and

- Examining the transmission channels of the shocks.

- Quarterly data on South Africa and G7 countries in 1988:1-2010 indicate that external shocks are the main drivers of real activity in South Africa.

- Credit supply shocks play, on average, a less important role than credit demand shocks.
Real per capita Consumption Growth